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USE OF THE TENSOR PRODUCT FOR NUMERICAL WEATHER
PREDICTION BY THE FINITE ELEMENT METHOD - PART 2.

Introduction

This is the second installment of a report-pair concern-
ing implementation of tensor product factoring of coeffi-
cient matrices in applications of the finite element method
to numerical weather prediction. It was noted in Part 1
(Ref. 1) that these techniques were introduced in numerical
weather prediction by Staniforth and Mitchell (Ref. 2).
Discussed in Part 1 are applications in which the "mass"
matrix for a grid such as that shown in Fig. 1 is factored
as the tensor product of two matrices.

N 9 10 11 12
b2
5 6 7 8
I - € Trows
i}y |2 |s 4

\ ai az as )

n columns

Fig. 1. Node numbering and spacing.

One of these matrices (MA) depends solely upon the nodal.
spacing in the east-west direction (a;) and the other (MB)
depends only on the north-south spacing (bi)' We began with
the set of simultaneous linear equations
Mw=v, <1l>
where M (the "mass" matrix) is symmetric, ne x ne, and w and
v are column vectors of height ne. M and v are input quan-
tities and w is sought. The tensor product representation
of M is
M =MB * MA, <2>
where MB and MA are tridiagonal, symmetric matrices, e x e
and n x n, respectively. (The tensor product and matrices
' MA and MB are defined in Appendix A.) This representation
allowed <1> to be rewritten as
MAWMB =V, <3>
where W is n x e and the successive columns are subvectors
3
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of w corresponding to the rows of Fig. 1. V is alson x e
and similarly derived from v. Boundary conditions consid-
ered were a cyclic condition in the east-west direction and
either homogeneous Neumann conditions (normal derivative
zero) or nonhomogeneous Dirichlet conditions (specified
nonzero values) on the northern and southern edges.

The present report discards the cyclic east-west boundary
condition and deals with two cases:

(1) Solutions of <3> with nonhomogeneous Dirichlet con-
ditions on all four edges;

(2) solution of Poisson's equation for the same region
with nonhomogeneous Dirichlet conditions on all four
edges.

Mass Matrix - Dirichlet Boundary Conditions

Effects of the Dirichlet boundary conditions on the solu-
tion process are most readily understood by considering the
following partitioned form of <1>: .

[ )] - [ -

In <4> the w vector has been rearranged so that all of the
boundary values are in the subvector wp and the interior
("center") values are in w. A similar reordering has been
applied to v and M. If the boundary values of w are pre-
scribed, then w, is known and only w. remains.to be found.
Expanding the lower partition of <4> and placing the known
terms on the right gives

Mz,We = Ve - M;,Wh, <5>
or, letting vc' = V.- lewb, we have
M“wc = Vc'- <5'>

We consider now how the strategy just described can be
applied when the tensor product resolution of M has been
used to convert <l> into <3>,. In the matrix W the pre-
scribed boundary values occupy the first and 1last columns
and the top and bottom rows. Denote this border matrix,
including an (n-2) x (e-2) null matrix inside, by WB.

4




e
Calculate SR
VB = MA WB MB <6> '
and now form
P V' =V - VB. <7>
Now define a set of submatrices MAl, MBI1, Wl, and V1
. obtained from MA, M?, W, and V', respectively, by removing

the first and last columns and the top and bottom rows. The
reduced problem becomes
MAl W1 MB1l = V1 <8>

As described in Ref. 1, <8> may be solved by standard Gaus-
sian elimination procedures. A computer program (GAUSS4)
which carries out these calculations is listed in Appendix
B. The subroutines of GAUSS4 are designed for substitution
in the program devised by Hinsman (Ref. 5).

Poisson's Equation - Dirichlet Boundary Conditions

As noted above, Staniforth and Mitchell (Ref. 2) appear
to have been first in applying the tensor product resolution
ta Poisson's equation in a numerical weather prediction
problem using the finite element method. Additional detail
is given in earlier papers by Dorr (Ref. 3) and by Lynch,
Rice, and Thomas (Ref. 4).

Finite element discretization of Poisson's equation for
the region of Fig. 1 results in a set of simultaneous linear
equations which may be written in matrix form as

Kw=v, <9>

where vectors v and w are, respectively, given and unknown.
As for <1>, each has length ne and the coefficient matrix K
is ne x ne, symmetric, sparse, and block tridiagonal. K is
called the "stiffness" matrix in finite element parlance.

“f‘

It is easily shown that K is expressible as the sum of
two tensor products as follows:

: K =MB *¥ SA + SB * MA, <10> Lo
The new matrices SA and SB are symmetric, tridiagonal and )
depend only on the a, and bi’ respectively. Explicit formu-
las for SA and SB are given in Appendix A.
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Using the definition of the tensor product and again con-
verting the vectors w and v into the n x e rectangular
matrices W and V, <9> may be written as

SAWMB + MA W SB = V. <11>
Before solving <l1> we must first take account of the Diri-
chlet boundary conditions on the four edges of the region.
As in solving <3>, the given boundary values are in the

first and 1last columns and top and bottom rows of W. As
before, we let WB be an n x e matrix containing the given
boundary values, together with zeros at locations corre-
sponding to interior nodes. Calculate

VB = SA WB MB + MA WB SB, <12>
and then form

V' =V - VB. <7>
The remaining step again parallels that used when applying
the Dirichlet boundary conditions to <3>, Specifically, we

introduce submatrices MAl, MB1l, SAl, SBl, W1, and V1
obtained from MA, MB, SA, SB, W, and V', respectively, by
removing the first and last columns and the top and bottom
rows. The reduced problem becomes

SAl W1 MBl + MAL Wl SBl = V1. <13>

To solve <13> we first need the complete sclution of the
eigenproblem
SBl Pj = Ay MB1 Pis <14>
where P; is the ith eigenvector and Aj is the corresponding
eigenvalue. We write the complete solution in the form
SB1 P = MBL P 4, : <14'>
where P is the (e-2) x (e-2) modal matrix whose columns are
the P; and A is the (diagonal) spectral matrix whose ele-
ments are the )j. We specify that the modal matrix is nor-
malized so that
PT MBL P = I, <15>
where I is the identity matrix of order e-2 and PT is the
transpose of P. If both sides of <13> are postmultiplied by
P and <14'> is used to replace SBl P, <13> becomes
SAl W1 MB1 P + MA1 W1 MB1 PA = V1 P. <1l6>
Let X = W1 MB1 P and U = V1 P, then <16> is equivalent to
(SA1l + Xy MAl) X; = Uy, i=1, e-2, <17>
6




where x; and u; are, respectively, the ith columns of X and
U. Since the ccefficient matrix in <17> is tridiagonal, the
Gaussian elimination process, i.e., factoring, forward
reduction, and back-substitution, is computationally econom-
ical. The final step consists of a matrix multiplication to
obtain
Wl = X PT. <18>

Since W1 contains the w values at all interior nodes and the
boundary values were known in advance, the solution is com-
plete. A FORTRAN program (GAUSSS) which implements the ten-
sor product solution for Poisson’'s equation is given in
Appendix C.

Operation Counts and Storage Requirements - Poisson's Equa-

tion

In Ref. 1 comparisons of floating point operation counts
and storage requirements were made for solutions of <1>,
Substitution of the boundary conditions considered here in
place of those considered in Ref. 1 has a negligible effect
on both operation counts andistorage fequirements. Accord-

ingly, no further comparison is given here for solutions of
<l>,

Solution of Poisson's equation (<9>) using the tensor
product resolution <10> of K is more costly in terms of com-
putation and storage than the previously studied applica-
tions to <1>. 1In Table 1 the number of floating point oper-
ations and the required number of coefficient matrix storage
locations are compared for three different solution methods.
These are SOR (successive over-relaxation), SKY (skyline
storage and Gauss elimination), and TENSOR (the scheme
described above). A floating point operation is defined to
be one multiplication (or division) plus one addition (or
subtraction). The exact operation counts would be polynomi-
als in n and e. Only the highest degree terms are given in
the table. Since it is not possible to predict the number
of iterations per solution using SOR, the operation count '_:
given for that algorithm is for a single iteration. In . 1

7 ! a_'f




Table 1 a storage location corresponds to 8 bytes. For the
comparison it 1is assumed that each floating point number

requires 8 bytes of storage and an integer requires 4 bytes.
The storage requirement given for SOR is based on the com-
pact storage scheme described by Franke and Salinas
(Ref. 6).

»

TABLE 1. Operation Counts and Storage Requirements.

ALGORITHM || NUMBER OF OPERATIONS | NUMBER OF STORAGE LOCATIONS

PER SOLUTION FOR COEFFICIENT MATRICES
| —
SOR 10 en (1) 13 en
SKY 2 en? en?

TENSOR 2 en? o2

Note: 1. Number of operations per iteration.

It is perhaps surprising to note that the number of oper-
ations for TENSOR is no fewer than for SKY. Turning atten-
tion to storage requirements reveals that for a large prob-
lem (e = n = 100, say) the SKY storage requirement for the
stiffness matrix is 8 megabytes, compared with 1 megabyte
for SOR and 80 kilobytes for TENSOR. It is this comparison
which is the compelling reason for preferring TENSOR. It is
acknowledged that there is overhead associated with the one-
time solution of the eigenvalue problem <14>, but the tri-
diagonal form of matrices SBl and MBIl makes the amount of
computation comparable with that required for a single solu-
tion of Poisson's equation. Since two solutions of Pois-
son’'s equation are required at each time step, the overhead
is clearly negligible.

It is not feasible to make a definitive comparison
between the number of operations required for SOR and those

required for the other two algorithms. If the number of
ical and the storage tradeoff would need to be weighed.

iterations is less than 0.2 e, then SOR will be more econom- ' "}“g
1
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Conclusions

It has been demonstrated that Dirichlet boundary condi-
! tions on all edges of the region are easily incorporated in

solution processes which use tensor product resolution of
the coefficient matrix. For very large problems the tensor
product algorithm uses much less core storage than alterna-
I tive choices. The computational expense of a solution to
Poisson's equation is substantially the same for Gaussian
elimination and for the tensor product scheme. It 1is
expected that successive over-relaxation is almost always

more expensive.
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APPENDIX A - TENSOR PRODUCT AND MATRIX DEFINITIONS

-

Tensor Product The tensor product of matrices C and D

may be represented in block partition form as

€110 €120 c¢130
C*D = C21D szD Cst
€31 D €320 C33 0

where the cjj are the elements of C. Note that, if C and D
have dimensions r x s and t x u, respectively, the tensor

product has dimensions rt x su.

Definitions for matrices MA and SA are given below. The
corresponding expressions for MB and SB may be obtained by
substituting "b" for "a" throughout and replacing n by e.
(Symbols a;j and bj are defined in Fig. 1l.)

261 ai 0 0
1 a; 2(ataz) a, 0
MA = [ 0 Az 2(32"’33) as
(n=4) 0 0 ajs 233
- -
1 1
3 Tm 0 0
J1 1,11
SA = ay a3y Az QA
- 1 1,11
(n-4) 0 -az a: ds aj3
1 1
L 0 0 oy a’.
10
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APPENDIX B | ]
: PROGRAM to SOLVE M w = v with DIRICHLET BOUNDARY CONDITIONS 1
l Listing: GAUSS4 FORTRAN B
MAIN PROGRAM MASS MATRIX USING TENSOR PRODUCT RESOLUTION -9
THIS PROGRAM IS DESIGNED TQ TEST THE SCHEME (TENSOR% B
WHICH RESQLVES THE MASS MATRIX INTO A TENSOR PRODUCT IN
ORDER_TO SOLVE THE SYSTEM OF EQUATIONS M w
THTS PROGRAM THERE ARE DYRTCHIET BOUNDARY CONDITIONS ON
ALL 4 EDGES OF THE REGION. THE PRESC UNDARY
VALUES ARE GIVEN IN THE_CORRESPONDING LOCATIONS IN V.
THE SUBROUTINES MAY BE INSERTED IN THE PROGRAM DEVISED

(eloleloiolelrielelels]

IMPLICIT REAL*8(A
MMON/CM14/

sosagggggﬂ%gggzzk i cax) omnzny a0
: ? g)1 ONG, NLAT

WRITEztAIOQO)
1000 _FO (7 MASS MATRIX - TENSOR PRODUCT RESOLUTION'
zgs §001)NL0NG ,NLAT
WRIT 6, OO?A
WRITE(6,503)B

O-Z)

503  FORMAT(/,' " B: :,224F3.0;;
1001 EORMAT(Y ' wiowg 24235310
C CONSTRUCT FACTORS, GAD AND’GBD OF MASS MAka%
RTT %)AG
3 4)BéG: ', (12F4.1))
1902 gg: ", (12F4.1))
1394§GBE,/ (3X,6F7.3))
GBD',/, (3X,6F7.
{09 GBP"+/» (3K:677.3))
6 )MB
*NLONG
NG
o)V
% NG&AND SIDE FOR DIRICHLET CONDITION
=2 . LONG
gﬁs +8§DZ§ g %g ? Si £2*J31)*V(J 1)+GAD(2%*J-2)
2 =V % G *J-2)¥ J
D %*5513 L+J+ %)JGB ¥£LATX11+ AD(2%3-2)*V(L+J)
= B EzlLATx 1)
GBD 33=o
gBD 2J5?T§- =
3% ; . 9% T-1)%V( (- - !1
g§<mzl§e ézzJ A RS T Y ,
3 gNG: i -1)* e
Yz zé §im,oucﬁ+c%n{ SRR I H TV (IRt dnTysNe)
a4 Z*G Lo
- csn Zingx =CL
E 510 -8
5 PERFORM £DﬁT F CTORING ?F GAD AND GBD ]
FACT1(GAD,N :
T |
f6:1ooi GBD

V- . S

|
11 - e
J

sasuhaedinbod o Shaad 0 WP TV S G Y :




b g 2an

PERFORM FORWARD REDUCTION AND BACK-SUBSTITUTION USING
FACTORS OF GAD
CALL BACKAlgGAD V)

gERFORM égRWAR REDUCTION AND BACK-SUBSTITUTION USING

C
c

X,5F8.2))

—p=lnoy 0O
n
=003
)
4
3
m
o

3{;1 ‘3‘
361

****EER**************************************************
SUBROUTINE FACT1(A,NN)

SUBROUTINE FACTi PERFORMS L*D*I.T FACTORING ON A SUBMATRIX
OF A SYMMETRIC TRIDIAGONAL MATRIX STORED_IN SKYLINE FORM.
THE SUBMATRIX IS FORMED BY OMITTING THE FIRST AND LAST
COLUMNS AND ROWS OF THE INPUT MATRIX.
.~ - INPUT VARIABLES
. A(NWK) = INPUT MATRIX STORE IN COM ACTED FORM

= NUMBER OF COLUMNS ROWS) IN INPUI MATRI
NWKOU PGTNUMBER OF ELEMENTS BELOW SKYLINE (2*NN -

. A(NWK) = D AND L - FACTORS OF INPUT SUBMATRIX

OO QOOOAOAa O

" iIMPLICIT RE *8(A H,0-2)°
DIMENSION A(1

PERFORM L*D*LT FACTORIZATION OF STIFFNESS MATRIX
LONEMM =NN-2

3%
gﬂzﬁuifq/%? J)
120 éAé%xo 2000%N A(KN)
50 EJ+
2000 $ NONP

2E20 12)
RETURN

****E*E***************************************************

****iggkguliNE*EAQKQ££**V;********************************

THIS SUBROUTINE PERFORMS THE FORWARD REDUCTION AND BACK-
SUBSTITUTION USING THE FACTORS OF GAD

IMPLICIT REAL*S{A

{ &A %ONG
DIMENS ON A(
DEFINE LIMITS FOR DO-LOOPS

aaqn

S ATRIX NOT POSITIY DEFINITE'
3Z{TIVE STvOT FOR EQUATION T E //,I vaotlé",

Qo o

ann

NTM=NLAT-1
LONGM=NLONG-1
LONGMM=NLONG-2
REDUCE RIGHT-HAND-SIDE LOAD VECTOR
égO K=1 NTM
V?K NLONG*J? V?K*NLONG+J) -V(K*NLONG+J-1)*A(2%J-1)
DIVIDE BY DIAGONAL ELEMENTS

,LONGMM
v?x*NLONG+J+1 =V (K*NLONG+J+1)/A(2%J)

BACK-SUBSTITUTE

(olele!
o

ocnng; anan
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dodledededededededededeTevevedededeve Yoo dodededevededevededeve Yo de dedededededededeveSedededededededededavesevedevede

“i¥¥§2¥IlNE*E%E§§¥L *xl**********************w******%**

%
THIS SUBROUTINE PERFORMS THE FORWARD REDUCTION AND BACK-
SUBSTITUTION USING THE FACTORS OF G

IMPLICIT REAL*B A-H
DIMENS{ON A1 3 v
DEFINE NEEDED INDEX VARIABLES

%%

aaqnn oo

N%ONG

aQnon

LATX=NLAT+1

LONGM=NLONG- 1

REDUCE RIGHT-HAND-SIDE LOAD VECTOR

DO 100 K52, LoNGH :
1¥Z%+ J- 1§*NL0§G) =V (K+ (J-1)*NLONG)-V(K+(J-2)*NLONG)

ann

N
o

DIVIDE BY DIAGONAL ELEMENTS

DO 40 J=2,NLAT
V(K+(J-1§*NLONG)=V(K+(J-l)*NLONG)/A(Z*J-Z)

BACK-SUBSTITUTE
"63 1+Lm’( T ONEdRY 5 (BRI

****E*x**************************************************

aqans ana
o

N
o
FA

100

C
C ****§¥E§g¥$lNE*AMz§§g*********************x*w*******w****
C THIS SUBROUTINE FORMS THE MASS MATRIX IN THE FORM OF A
C TENSOR PRODUCT OF THE GBD MATRIX AND THE GAD MATRIX.
C THE FIRST OF THESE IS NLAT + 1 + SYMMETRIC
C AND TRIDIAGONAL. THE SECOND IS NLONG BY NLONG, SYMME?T-
C RIC, AND TRIDIAGONAL THAT THERE ISNO CYCLIC
C BOURDARY CONDITION IN THE EAST-WEST DIRECTION. BOTH G
C AND GAD ARE STORED IN SKYLINE VECTOR FORM (UPPER TRIANGLE
C WITH SPACE FOR FILL-IN). INTEGER ADDRESS VECTORS MB AN
8 MA ARE ALSO GENERATED.

IMPLICIT REAL*B

COMMON %A

COMMON / M A 21

COMMO % AD zx ,GBD z (z ) MB(ZN)
c Nglou BG é BD
8 1GAD NLONG-3) ,MA{RLO G#l ﬁ

TX=NLAT+1

LONGM=NLONG- 1
C FIND BG BELEMENT HEIGHT)/6.

%8“ J LAT
2 BG(J =831+LONGM*(J 1))/3.
C GENE

GBD 3041)

Eoz )

GBD éi 3 G(J 1)+BG(J))
4 GBD{K+1)=B

GBD( 2*NLAT G(NLAT)

13
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1012 FORMAT(/

APPENDIX C

PROGRAM - POISSON'S EQUAT

ION with DIRICHLET BOUNDARY
ONDITI

ONS
Listing: GAUSS5 FORTRAN

MAIN PROGRAM STIFFNESS MATRIX USING TENSOR PRODUCT
RESOLUTION

THIS PROGRAM IS DESIGNED TO_TE
RESOLVES THE STIFFNESS MATRIX
PRODUCTS IN ORDER TO SOLVE THE
K V. THERE ARE DIRICHLET
0 ON. THE
VALUES ARE GIVEN IN THE_CORRESPO
THE SUBROUTINES MAY BE INSERTED
BY HINSMAN
MPLIC}T REAL*B A- H 0-

MMON/CM

DIME?SIOg%Az ti &NEA? AL{ZK] 302(8K) R} (ZL),SBL(ZL)

STIFFNESS MATRIX - TENSOR PRODUCT
&LONG NLAT

ST THE SCHEME WHICH
INTO A SUM OF TWO TENSOR
SYSTEM O ONS
BOUNDARYCON ITIONS ON
PRESCRIBED OUNDARY
NDING LOCATIONS IN V
IN THE PROGRAM DEVISED

QO QOOOOOOOON

,(24F3.0
,(24F3,0 ,

1 NG ' I3 NLAT =',1I3 /g

cousgxucr FACTORS, GAl,’'GB1, SAl, AND sad Of' STIFFNESS '

AG: ',(12F4.1))
BG: ',(1l2F4.1))

1012 SA} +/,(3X,6F7.3))

./ +(3X,6F7.3
WRITE 1094 g5/ )
FORMA { GBL',/,(3X,6F7.3))
WRITE 014)
1014  FORMA 338 /,(3X,6F7.3))
¢* 1L oab BoRDER vECTOR Wi’

READ Vi
CALL OR ERSWI V)
WRI 6510 '

504  FORMAT(/
1002 FORMAT()
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iRaETe 431
31 % 3 D: ',3Fl2.4)
FORM U = VINT*P

LONGM= NLOVG-l
LONGMM 2
NLATM

Dg 30 L NLAT
g i} : NLONG 2)-1

(olalelV

KUL
D
TEM
D J 1,NLATM
J ONG+K

EMP+VéJV) P (JP)

4nn
+ b-!t--z

0
0
V

g U

WRITE 24532)
Chbke T riRgs b oal's

C
g PUT FINAL RESULT IN V

DO 40 L=1,NLATM
DO 39 K=1, , LONGMM

i
3
J*
P=J
P

:nxn

?
1

WNON
O\Wweoo

532 1&63( ,4F12.4))

0 38 J
TEMP= TEMP+P%?§ 1%‘NLATM+L)*U((J 1)*LONGMM+K)
g k“NLONG+K

WRITE(6,510)V
STOP
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S _SUBROUTINE CLEARS THE BORDER VECTOR W1l AND
STITUTES THE BOUNDARY VALUES FROM V

IMPLICIT REAL*8
coMM CMlA N% g
EﬁMENS ON W ZQ)

NC= 4?N ONG
NR=4*LA
NBZNCNR

DO 4 J=1,NB
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APV ERCOEANOEACULE
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****§QE§QHI£§E*Q¥I§§**********w**********************x***

C
C IHIS SUBROUTINE FORMS THE MATRICES CAl, GBl, SAL, AND SB1
C THAT ARE_FACTO N THE NSOR"PRODUCT§ USED TO FORM THE
€ COEFFICIENT MATRIX ("STIFFNESS" MATRIX) FOR THE POISSON
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UBROUTINE PREMULTIPLIES Wl
ZFIRST

RUNCA
SUBTRACTS INTERIOR

IDIAGONAL.
IMPLICIT REAL*8 é

COMMON Ac(é gﬁLA§§zi¢§

DIM
1GA1%3 NLON (NL

LATX=NLAT+1
LONGM-NL NG-1
(%LEMENT HEIGHT)/6.
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SUBROUTINE MULT1(W1,V,A,B)

AND LAST ROW

OMITTED
TED B MATRIX z

FIRST AND’LAST

IMPLICIT REAL*8(A

COMMON lA §
E}%ﬁNg ON ?ZQ %ZP? A(1),B(1)

LONGM= L NG 1

FCU=W1(1

RCU=W1(3*NLONG+1)
4*NLONG

522%;%;;e3§c,,

ngreie

17

MATRIX BY TRUNCATED
POSTMULTIPLIE
COLUMNS OMITTED
LEMENTS OF W1 FROM CORRESPONDI

**Ekgmi*zi*gg*x*************************w***w*xx**xw%**mt**

ALL OF THESE MATRICES ARE SYMMETRIC AND

2ZK& Bl{ZL) ,SB1(ZL)

Je e deSede o Sede dode Yo do e Yo de Yo dede Yo e Yevede dove e Yo de Yo e Yo de dede o e ve e vede Se de Yo dode Yo e e e de Yo e Ve e S de e
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L=3*NLONG+J
FCC=A(K+1)*FCU+A(K)*W1(J)+A(K+3)*W1(J+1
RCC=A(K+1)*RCU+A(K)*WL(L)+A(K+3)*WI{L+1
FCU=W1(J
: RCU=WI({L
: W1(J)=FC
‘| 2 WI{L}=REC
L Z.=2“NLONG'1
N DG 4 J=2,NLAT
» L=4*NLONG+J
= LL=L+LATX
" K=L+3¥LATX
- WLy aTE 3 w1
| ] 4 w1i1<1< atid Ai& (K)
, C WRITE(6,520) (WI(L),L=1 ng
o WRITE(6,52})(Wl({L),L=L %
520 FORMA 4, INTE EDIATE ESULT, W1',/,(3X,5F8.2))
521  FORMAT 6F8.2
LASTR 2PLATX-1
R 13_,{‘1’ ngﬂ%}:BP)'*"w1(2)+B(2)’~W1(NC+LATX+2)*B(5)
+
t ly% 5*§ﬁ? ﬁa} B %ifgi(NLONG 1)+B(2)*W1(NC+2*LATX+2)
; Wl 2NLO,G+2 =B(LASTB-2)*W1(NC+2*LATX-2)+B(LASTB-3)
s 1*W1(NC+2*LATX-1)+B(LASTB)*W](3*NLONG+2
WL1(3*NLONG-1)=B{LASTB-2)*W1(NC+3¥LATX-2)+B(LASTB-3)
1*W1(NC+3*LATX-1)+B(LASTB)*Wl(NC-1
J2=NLONG-2
DO 6 J=3,J )
W1(J+NLONG)=B(3 WL, ,
6 WI1(J+2*NLONG)=B{LASTB )*W1(J+3*NLONG)
URL=WI(NC+LATX+
BRL=W1{NC+2*LATX+2)
J2=LATX-2
. DO 8 J=3,J2
N Zaadilde.
= +
URC=B(ND+1)*URL+B(ND)*W1 NCU)+B§ND+3 *w1§ CU+1)
BRC=B (ND+ 1) *BRL+B (ND)*W1 (NCU+LATX)+B (ND+
1%*W1 (NCU+LATX+1
URL=WI(NC
BRL=W1 NCU+LATX)
wl(NCU =
8 WI(NCU+LA
W1(NC+LA + 1& &
WL(NC+2 LAT *NLO G+2
WI(NC+2 LATX+2 ONG-1
: c WI(NC+3*LATX-1)= 3“NLONG 1
{ C CORRECT V
- NLATM=NLAT-1
R Eo 10 J NLATM
; =NC+
: K=Z - L
{g,_zw x§ ¢H
K=J*NL
10 v&x = &xg -W1(L)
J2=
B Do 17 J3=2,J2
L=NLON
X(L =y L w1(L)
x=z G+J
PR 71 R

R C*****QNE********************************“*****x********w**
: SUBROUTINE FFFDB(X,E,GA,SA)

C THIS SUBROUTINE SOLVES A SUCCESSION OF ONE-DIMENSIONSAL
C PROBLEMS. THE RELEVANT COEFFICIENT MATRIX C IS FIRST
C FORMED, THEN FACTORED, FOLLOWED BY FORWARD REDUCTION,

9 18




DIVISION BY THE DIAGONAL ELEMENTS, AND BACK SUBSTITUTION.
THE PROCESS IS CARRIED OUT NLATM TIMES.

MPLICIT REAL*B%A-H
MMON/CMIA/N NLO
DIMENSION X{l LELL),
LATM=NLAT-
LONGM=NLONG- 1

LONGMM=NLONG-2
DO 50 L=1,NLATM

FORM COEFFICIENT® MATRIX C

olole!

92
GA(1),sA(1),c(zU)

ann

D1=E(L o
Sl
c?J§=sR%j+2)+Dl*GA(J+2)

FACTOR C
D8y
,7,3

P

anase

e

()
O u~i i

LZ-N00

O~ ONOO=t 30 N~ 1) g

NG

[EAETAN

Woar= 3=

~LONN
O e L

[/, S ., LN

0
1

H O DN+

J,C(2%J
TOP(— MRTRIX NOT_POSITIVE DEFINITE'.//,,
VE PIVOT FOR EQUATION ,13,/7,7 P1vot =,

U~
[ i e

PERFORM FORWARD REDUCTION
J2={L-1)*LONGMM
DO 10 §=z LONGMM
X(J2+3)=X1J2+7)-X(J2+3-1)*C(2%(J-1)+1)
DIVIDE BY DIAGONAL ELEMENTS
X(J2+1)=X(J2+1)/C(1
D %z %=Z(LONG&é (1)
X(J2+3)=X{J2+J)/C(2%(3-1))
BACK-SUBSTITUTE
4 J=2 ,LONGMM

1
JB=J2 +LONGM-J
xZJBi=xZJB§-x(JB+1)*c(2*(L0NGM-J)+1)
CONTINU
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